
Actor-Based 
Programming

Fundamental Concepts

Actors as fundamental units

Message Passing

Concurrency

Encapsulation

Mailboxes for message queues

Creating and destroying actors

Error handling and supervision

Location transparency

State management

Fair scheduling

Advanced Concepts

Distributed actor systems

Fault tolerance

State persistence and snapshots

Actor lifecycle management

Advanced messaging patterns

Dynamic system reconfiguration

Security in actor systems

Custom schedulers and dispatchers

Testing and debugging

Reactive streams and Back-Pressure

Technical Proficiency and Best 
Practices

Design patterns for actors

Performance tuning in Actor-Based 
systems

Distributed deployment

Secure communication

Monitoring and telemetry

Error handling and recovery

Versioning and compatibility

Integration with other systems

Scalability strategies

Community and standards

Interconnections and Influences

Relationship with concurrent and 
distributed programming

Influence on system design and scalability

Used in Real-Time and responsive systems

Use Cases
Concurrent processes in Erlang

Distributed systems with Akka Framework

Future Trends and Evolving 
Aspects

Application in IoT and Edge Computing

Use in Large-Scale Distributed Systems




